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Fig. 7. The effect of insertion depth of a nontouching strip on the equiv-
alent-circuit element values. (a) For a centered strip having w = 0.15 in;
the solid line shows X, and the broken line shows X;. (b) The resonant
frequency of X, as a function of depth for various values of w.

rectangular waveguide. The experimental values of input sus-
ceptance agree closely with the theoretical values. The resulting
equivalent circuit has direct application in the design of micro-
wave filters and tuning elements, and in the recently proposed
planar circuits and fin-line structures.
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On the Theory of Coupling Between Finite Dielectric
Resonators

LARS PETTERSSON, STUDENT MEMBER, IEEE

Abstract—The coupling coefficients between open dielectric resonators
in three useful dielectric-filter configurations, calculated from an electric
rather than from a magnetic excitation of the fields, are given. The
limitations of the latter method are pointed out and experimental results
are given which supports the first method and shows that the differences
cannot always be neglected.

INTRODUCTION

Mutually coupled dielectric resonators in a waveguide under
cutoff form a useful class of microwave bandpass filters [1], [2]. -
Since an exact field analysis of such a filter is a formidable prob-
lem, various approximate methods have been used. In order to
calculate the resonance frequencies and internal fields of the
resonators, one usually uses the so-called magnetic-wall model
[3]. To calculate the coupling between two resonators or between
a resonator and the waveguide fields various magnetic-dipole
approximations have been used [1], [2], [4], [5]. In this short
paper we will treat these coupling problems by calculating the
excited waveguide fields directly from the polarization current
density. This is also shown to be theoretically more correct than
the magnetic-dipole methods. When we make the actual cal-
culations we use the magnetic-wall model to obtain the polar-
ization currents. We then get formulas which are almost as easy
to use as the ones previously used. These formulas indicate that
the commonly used magnetic-dipole approximations can give
substantial errors in coupling strength. Experimental resuits
obtained with two TiO,-resonators, & = 90, also support this
method compared to the magnetic-dipole methods.

THE EXCITATION AMPLITUDE

Suppose that we in some way have found the fields inside the
resonator and want to find the related waveguide fields for
z > A[2, in Fig. 1. To do this we will use the polarization cur-
rent J, as current density J in the waveguide or, if ¢,, # 1, the
excess polarization current density jo &y(e; — &2)E. In the
following we will, however, assume that ¢, = 1.

We expand the waveguide fields in orthogonal modes as

E* = ¥ GG £ g)e™ P = ¥ GAE: (1)
n n
HE =Y CE(thy + hp)e™ =Y CEHE  (2)
n n
and get [6]
Gt = —%f J,- B~ dv 3)
n JvV
where .
P,,=2f &y X hy- 2ds. C))
waveguide

Cl‘OS§
section
So far we have not introduced any approximations. In the
magnetic-wall model we may obtain expressions for the fields
inside the resonator [3]. In this model the surfaces y* = +B/2
and z’ = +A/2 in Fig. 1 are perfect magnetic conductors. It is
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Fig. 1. A dielectric Tesonator transversely onented in the center of a

rectangular waveguide. x’ = x — @/2; ' =y — bf2; 2’ = z.

valid with good accuracy for our purpose if ¢, is large enough
and if there are not metal walls close to the resonator.
The resonator fields in the magnetic-wall model are

' !

nz ny’, ,
H,. = H, cos — €0s —=—'COS ;X Sa
x 0 1 B Vi (5a)
' !
H, = H, —_— " cos ™ sin™sin 7 x’ (5b)
B 1 1 A B
b4 :4:—2' + EE
H,. = H, —___sin 2% cos P sin yx' (5¢)
4 1 1 A B
/4 :ZE + E—z-
E.=0 (5d)
E, = jou, Ho sin 2% cos 2 cos p,x' (5e)
4 1 1 B
AV
E. = —jou H, nz Ty (56)

—T cos — sin 53 cos y;x’
Applying this to (1)-(3) we obtain the waveguide fields when the

resonator is transversely oriented in the center of a homogeneous
waveguide (see Fig. 1)

E=j 2rZ,M
Agab

2 8no( - 1)(m+n+ /2 Kmn

modd
neven

. mnx nny .
—sin —~ ¢cos —= j
a b

nn mnx nny

+ sin —— sin —= 3| e %mn® (63)
amnb a b
2
H = M Z (=Dt D2 g Umo” i MTX oo MY o
ab modd . - a b
neven
+ T o5 X gin 7Y b
aba,,, a b
+ T7 cos T2 cos I2Y 2] g amne (6b)
a a b
where
af = @ — DHoABL - 16 sin y,L/2 -

2,2 (1 1 y:L/2
Av°m (AZ + = 5
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Fig. 2. Two coupled, transversely oriented, dielectric resonators.

is equal to the magnetic-dipole moment of the resonator, y; is
the constant of propagation in the £’ direction inside the

resonator
1, ifn=20
o =

2, ifrn#0 ®

&, is the constant of attenuatlon m the waveguide for mode |
(m,n), and

Konw = Kmn(y) * Kmn(Z) ° Kmn(x)
cos nnB cosh U
_ 2b 2
= 3 3
T
b n
mnL mr mnl y:L
c0§ —— — — sin cot ==
2a ay; a 2

is a correction factor which tells how much the amplitudes change
when the resonator cannot be considered very small. Note that
K,,— 1 when B/b >0, ¢,A4— 0 and 1/ay; » 0 (that is
L/a — 0 since y;L ~ constant).

In the formula for y;

21\ 2 (1 1
= — &, - T —_— e —
n \/ ( co ) rt A2 B

it is probably better to use the measured resonance frequency f,
than the value obtained from the magnetic-wall model. Also,
since the electric filling factor is much larger than the magnetic
filling factor we will use the explicit expression for the electrical
energy in all energy calculations, thus making the error as small
as possible since the internal fields are better known than the
external.

10§

Two COUPLED RESONATORS

We are now going to study the two-resonator system shown in
Fig. 2. The magnetic coupling coefficient, to be used in an equiv-
alent circuit, we calculate from the separation of the resonance
frequencies f; and f,, obtained when the fields are in and out of
phase, respectively. From perturbation theory ([8], with the
small modification of introducing &, in the derivation) we get

j J‘V E—O* . jp dV
IV (eo&rEp™ - E + poHo*

where Ej is the unperturbed field of one resonator, J, is the
polarization current density of the other, and E is the total

O — 0y = —
-H) dv

. perturbed field.

We now assume weak coupling so that the field distribution
inside the resonators is unchanged and the correlation energy in
the denominator is much less than the self-energy. Then we can
use (5d)-(5f) to obtain J,,, (6a) for E, in the numerator, and put -
E equal to E, and the magnetic energy equal to the electric
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energy in the denominator. This gives
_ 2 2
k = L2-h _ _ My Z 8n0 Ko %mo
f [} 2 W]_ ab wiodd %nn

neven

e~ %mnZ0

11

where z, is the center distance between the resonators and W,
is the stored energy of one resonator [2, eq. (11)]. Hence we see
that we obtain the same resuit as when the resonator is treated
as a single magnetic dipole [1], except for the correction factors
Kpa2. (A slightly different definition of M is used in [1] which,
however, does not affect the present comparison.)

If the resonator cannot be considered very small or if we want
to find the fields close to the resonators so that higher modes
must be taken into account, the correction factors K, in (6) and
(11) cannot always be neglected.

Two other interesting cases are when the resonators are placed
on a substrate as shown in Fig. 3(a) and (b). The natural modes
in these cases are LSE- and LSM-modes [7]. In the case of
Fig. 3(b), (5a)-(5¢) are still valid, while in the case of Fig. 3(a)
we have to replace the argument y;x’ by y,x" + ¢, since we no
longer have a symmetry in the x’ direction [2]. In the practical
cases of interest, however, ¢, is quite small. We also introduce
the variables 4, and /,,, being the constants of propagation in the
% direction in the air and substrate regions, respectively, and the
factors

. . 2 -
Dy = d — sin 2h,,d + Sl.l’ll h.d , _ sin 21t (12a)
2h, sin? [t 20,
. 2 .
Do =d+ sin 2h,,d 4 cos h,d ;4 Sin 21t (12b)
2h, &3 cos? [t 21,
but keep the definitions for M and W].
" In the case of Fig. 3(a) we obtain
2 12 2~ tmn2
- - M Ho Z &n0 Kmn Umo € ° (13)
2W1b nfg]ein amanE
where we obtain K,,,” from (9) by changing K,,,** to
1 sin (B, + y)L[2 -sin (h,p + @)
2 sin y;L/2 hnlye + 1
4 §in Utm = 7)L/2 - Sin (Anp — ¢x1)} .
hm/ Vi — 1

In the case of Fig. 3(b) we obtain

2
nr -
B K" (—-b) ¢~ omo

2
%mo “manE

k= _Muo

nodd
LSE

47

I‘Loz nodd
LSM

"2 =~ UpnZo
Cpn Kun” €7 %m

(14)
am02DmIi
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where all variables in the first sum are calculated for LSE-modes
and in the second for LSM-modes and where we obtain K,,,”
from (9) by multiplying by cos 4, p and replacing nn/b by #,, and
mn/a by nrn/b.

DisCUSSION OF OTHER METHODS

Various authors [1], [2], [4], [5] have, instead of using the
polarization current, used a magnetization as the source of the
waveguide fields. We are now going to show that this leads to
theoretical problems and that such approximations give errors
that cannot always be neglected. To do this we will try to
identify J, in (3) with a rhagnetization M and a potential Q
according to

Vx H=1T, + joegE =V x M+ VQ + jwegE.

asy

If we define H' = H — M we get
V x H = VQ + jogE (16)
V x E= —joB = —jou,H’ ~ jou,M an

where we are free toset V- M = 0.

Hence we get a magnetic current jou,M, and if M and VQ
equals zero for z > A/2, we get for the excitation amplitude
in analogy with (3)

c,t =1‘;’)ﬂfﬁn--1\7dv - %—fVQ-E,,‘ dv. (18a)
n n

Now we want to represent the resonator with a magnetization
only; that is, we want to put VQ = 0, and

AL L f B av. (18b)
However, since p = 0, we have
_ _ 1
V2Q = jwV - P = —ij-ve— 19

T

which equals zero only if either &, = constant, which is not the
case here, or if D L V(1/g). Consequently, if ¢ is constant
inside the resonator, the requirement V2Q = 0 is satisfied only
if D is parallel to the resonator surface. This is true in the
magnetic-wall model but not in a more realistic case. We con-
clude therefore that it is not, in general, possible to obtain an
exact solution using only the magnetization.

Let us now look at the idealized case for which D L V(l/¢,).
According to [1], a reasonable assumption is that M averaged
along the resonator axis is proportional to B, that is M ~ H,
and according to [2] we should use M ~ ¢ H. However, for M
to be proportional to H inside the resonator we must have

1y
M= (1 - —) " 20)
&
because only then
V x M = jole, — DeoF )
is satisfied. On the surface of the resonator we then get
. 1 — 1 —
VxM=(1-——)VxH-—-V—xH
&, &
- 1 —
=J, -V (_) x H. (22)

&
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The last term is equivalent to the surface current density

1 _
]ms=fzx5M=(—-—1)ﬁxH 23)

&r1

which must exist for the magnetization to be discontinuous.
Hence, the assumption that 3 ~ H is, in general, incorrect. Note
that in the magnetic-wall model this term is zero on the magnetic
walls but not on the other walls. Note also that if the assump-
tion that M- ~ H were correct the resonator would be equivalent
to a magnetic resonator. We also see that J,, is approaching the
finite function —4 x H as g, - 0.

In fact, with (18b) together with (20) we get a correction factor
K,,,,” for the case in Fig. 1 which is obtained from (9) by multiply-
ing cos (mnL/2a) in K, by

1+ Ao (m _ 9 .
e, \a®> n?
This expression does not approach unity even when g,; — 00

unless y;,L — 0 at the same time.
We can also write Maxwell’s equatlons in the form

Vx D= —jwegB+V x P (24a)
V x H = joD. (24b)
From this we obtain, in analogy with (18a), since g, = 1
CF = — fﬁn'-VdeV
&Py
= ko f (e — DH, -Hav

14

+ L (6, ~ DE x Hy™ dS.  (25)

n resonator
surface
The first term in (25) seems to support the assumption made in
[2] that M ~ &H for ¢, — . In this case we can, however,
definitely not neglect the second term, since the electric field
has 2 maximum on the magnetic walls. In fact, the two terms in
(25) must be of almost the same magnitude since the first term
gives a value ¢, larger than that obtained from (18b) together
with (20) which, in turn, usually gives a much smaller error.
A third commonly used expression [4], [5] is to regard
where 7 has its origin in the center of the resonator, as a distri-
buted magnetization density. This is associated to the formula
for the total dipole moment from a closed current loop

M, = %fr’ x JdV. )
However, (26) is in general not valid for large current loops.
Applying (26) together with (18b) to the case in Fig. 1 we get a
rather complicated expression for the correction factors K,
which, however, gives the correct result for small resonators.
The conclusion of this section is that (3) and (18b) with M ~ H
are not identical even if D L V(l/g) and g,; — oo, although the
differences in the results are usually small. If the resonator can
be considered very small, however, the approximation M =
47 x J can be used. In fact, it seems impossible to find a simple
definition for A which fulfills the boundary conditions.
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EXPERIMENTAL RESULTS

Two experiments have been made with resonators made of
TiO,, &1 = 90. The resonator dimensions were, in experiment I,
A = 10.16 mm, B = 5.08 mm, and L = 1.51 mm; while in
experiment II, 4 and B were interchanged. The resonators were
placed in a waveguide with dimensions ¢ = 10.16 mm and
b = 22.86 mm, and the resonance frequencies were in both
experiments 6.345 GHz. In Fig. 4(a) and (b) the measured
coupling coefficients in experiments I and II are shown together
with some theoretical curves, in which the magnetic-wall-model
fields (5) have been used. Curve ¢) in Fig. 4 has been obtained by
dividing the values in curve b) by a factor of 1 — (1o27,2)/(4&,17?),
which makes it equal to curve d) as ¢,; — 0.

From Fig. 4 we see that the experimental points are in good’
agreement with curve a) and that in Fig. 4(a) they are well
separated from the usually used curve d) and also from curves
b) and c). This result also supports the assumption that the
magnetic-model fields are good approximations to the real
fields for this purpose.

CONCLUSION

The coupling between dielectric 'resonators have been treated
by starting from the polarization current density instead of the
usually used magnetic-dipole moment. We thus obtained expres-
sions which showed that the differences between the methods
may be significant. Experiments have also been done which
support the assumption that the method treated here gives quite
accurate results also when we use a polarization current density
obtained from the magnetic-wall model.
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Effect of Diode Parameters on Reflection-Type Phase Shifters
PRADEEP WAHI, STUDENT MEMBER, IEEE, AND K. C. GUPTA

Abstract—This short paper describes effects of series inductance,
shunt capacitance, and resistances associated with p-i-n diodes on the
performance of reflection-type digital phase shifters using a shorted
transmission line behind a shunt-mounted diode. It is found that the shunt
‘capacitance is the most dominant reactance influencing the phase shift
and it increases the phase-shift value. The series inductance reduces the
phase-shift vaiue. Expressions for phase shift in various cases are
presented.

INTRODUCTION

One of the design configurations for a reﬂection-tybe phase
shifter consists of a p-i-n diode shunt mounted across a trans-
mission line at a distance / from the shorted end [1]. Phase of the
reflected wave at the diode plane changes when the bias on the
diode is changed from forward to reverse, as the later implies
inclusion of an additional line length /. Thus the phase shift
obtained is given approximately by 28: where g is the phase
constant of the line. This arrangement is converted into a
two-port phase shifter by using a circulator or a hybrid.

A simple procedure for designing such a phase shifter assumes
the p-i-n diode to be ideal, i.e., short circuit when forward
biased and open circuit when reverse biased. This method does
not yield accurate result at higher frequencies when parasitic
reactances and resistances associated with the diode become
significant. This short paper describes the effect of diode react-
ances and resistances on the phase-shift charactenstlcs of this
type of phase shlfter

DIODE PARAMETERS

The important parameters of a p-i-n diode are; series induc-
tance L (typlcally 0.4-2.0 nH), shunt capacitance C (0.1-2 pF),
forward-bias series resistance Ry (0.5-2.0 Q), and reverse-bias
shunt resistance R (~ 10 kQ). The effect of these parameters
may be considered analytically by taking them one by one in
association with an ideal switch. Phase-shift and insertion-loss
calculations are carried out by adding the diode admittance to
the admittance of the line behind the diode and finding out the
refiection coefficient caused by this combination.

EFFECT OF SERIES INDUCTANCE

When an inductance L is in series with the ideal switch (Fig. 1
inset) the phase-shift expression is obtained as

¢ = 2Bt + 2tan~! [cot fi + Zy/wl] — = @)
Manuscript received February 3, 1975; revised January 26, 1976.
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Fig. 2. Effect of shunt capacitance C on the phase shift.

It may be noted that the phase shift ¢ varies with both the line
length behind the diode and the reciprocal of the normalized
reactance (Z,/wL). Differentiating (1) with respect to L one gets

o _ 2 a1 o
. 2 2
oL [1+(cotﬁz+—z°)]w' L '
oL |-

which shows that the phase shift decreases with an increase in L.
The percentage deviation of the phase shift from an ideal case
versus the normalized series reactance is plotted for three different
cases in Fig. 1. It is seen that the deviation from the ideal case
increases with the value of L. Also the deviation is higher for
smaller values of phase shift (B1).

EFFECT OF SHUNT CAPACITANCE

The expression for phase shift for the case when there is a
capacitance in parallel with ideal switch (Fig. 2) is found'tg be

¢ = 2tan™? [w?-c - cot ﬂz] -z 3)
o A

The phase shift varies with both ;he length and the no;malized
shunt susceptance. Differentiating (3) with respect to capacitance
c o -

99 _ = 1 (E’_) ' 4)
oc [1 + (95 — cot ﬁl)z] Yo
Y,

which is always positive. Hence the phase shift always increasés
with an increase in the capacitance value. The effect of increase




