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Fig. 7. The effect of insertion depth of a nontouching strip on the equiv-
alent-circuit element values. (a) For a centered strip having w = 0.15 in;
the solid line shows ~z and the broken line shows X,. (b) The resonant
frequency of l’z as a function of depth for various values of w.

rectangular waveguide. The experimental values of input sus-

ceptance agree closely with the theoretical values. The resulting

equivalent circuit has direct application in the design of micro-

wave filters and tuning elements, and in the recently proposed

planar circuits and fin-line structures.
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On the Theory of Coupling Between Finite Dielectric

Resonators

LARS PETTERSSON, STOOENTMEMBER, IEEE

Abstract—The coupling coefficients between open dielectric resonators
in three useful dielectric-filter configurations, calculated from an electric
rather than from a magnetic excitation of the fields, are given. The
limitations of the latter method are pointed ont and experimental results

are given which snpports the first method and shows that the differences
cannot always be neglected.

INTRODUCTION

Mutually coupled dielectric resonators in a waveguide under

cutoff form a useful class of microwave bandpass filters [1], [2].

Since an exact field analysis of such a filter is a formidable prob-

lem, various approximate methods have been used. In order to

calculate the resonance frequencies and internal fields of the

resonators, one usually uses the so-called magnetic-wall model

[3]. To calculate the coupling between two resonators or between

a resonator and the waveguide fields various magnetic-dipole

approximations have been used [1], [2], [4], [5]. In this short

paper we will treat these coupling problems by calculating the

excited waveguide fields directly from the polarization current

density. This is also shown to be theoretically more correct than

the magnetic-dipole methods. When we make the actual cal-

culations we use the magnetic-wall model to obtain the polar-

ization currents. We then get formulas which are almost as easy

to use as the ones previously used. These formulas indicate that

the commonly used magnetic-dipole approximations can give

substantial errors in coupling strength. Experimental results

obtained with two Ti02-resonators, &, = 90, also support this

method compared to the magnetic-dipole methods.

THE EXCITATION AMPLITUDE

Suppose that we in some way have found the fields inside the

resonator and want to find the related waveguide fields for

z > xt/2, in Fig. 1. To do this we will use the polarization cur-

rent 7P as current density ~ in the waveguide or, if e,z # 1, the

excess polarization current density j~ eo(e,l – erz)~. In the

following we will, however, assume that &,z = 1.

We expand the waveguide fields in orthogonal modes as

17* = ~ Cn*(.?n t ~zn)e~jp”z = ~ C~*17.* (1)
n n

IT* = ~ Cn*(t fin + Fzzn)eT~fl”z = ~ Cn’k17n* (2)
n n

and get [6]

J
c“+=–+’ 7P - ~.- dV

nv

where

Pn=2

J

gnxjin.fds. (4)
waveguide
cross
section

So far we have not introduced any approximations. In the

magnetic-wall model we may obtain expressions for the fields

inside the resonator [3]. In this model the surfaces y’ = f B/2

and z’ = t A/2 in Fig. 1 are perfect magnetic conductors. It is
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Fig. 1. A dielectric resonator transversely oriented in the center of a
rectangular waveguide. x’ = x – a12; y’ = y - b/2; z’ = z.

valid with good accuracy for our purpose if erl is large enough

and if there are not metal walls close to the resonator.

The resonator fields in the magnetic-wall model are

HZt = Ho COS ;’ COS ~’ COS YiX’ (5a)

1 1

H,, = Ho

“B(z )

cos ~ sin’~ sin yix’ (5b)

+1
AB

B*

r
Hz, = Ho

7ry’

‘A($ )

sin ~ cos — sin yix’ (5C)

+1
A B

B2

EX, = O (5d)

t I

EY, = jcopo

A“(:’ -)

sin ~ COS ~ COS yiX’
1

(5e)

B2

E=. = – jcopo o

B“(i+ )

1
cos ~ sin ~ cos yix’. (5f)

F*

Applying this to (l)-(3) we obtain the waveguide fields when the

resonator is transversely oriented in the center of a homogeneous

waveguide (see Fig. 1)

2rcZoM
E=j —

Ioab

“ Zd e“o(-1)’m+”+’”z~ _5in Inrcxmn

[

— Cos =Y j
a bneven

rrn
+—

mnx
sin 1—sin ~ ,2 e-=””

amnb a
(6a)

+

i-

where

irrmtz mrrx mty .
— Cos — sin —
aba~” a by

mrri
= Cos

nrry
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9 e-am”’
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Fig. 2. Two coupled, transversely oriented, dielectric resonators.

is equal to the magnetic-dipole moment of the resonator, Y{ is
the constant of propagation in the f’ direction inside” ~he

resonator

{

1, ifn=O
en~ =

2, ifn#O
(8)

amn is the constant of attenuation in the waveguide for mode ,

(m,n), and

nnB
Cos — cosh *

.

‘-cr”’+rzr

.( mrrL mrrL
Cos — –~sin — cot Y~L

2a ayi 2a 2 )

()

2
(9)

l–~
ayi

is a correction factor which tells how much the amplitudes change

when the resonator cannot be considered very small. Note that

K~n ~ 1 when B/b + O, am”A * O and l/ayl ~ O (that is

L/a + O since yiL E constant).

In the formula for yt

“=JRY”l-’2(+++) ’10)
it is probably better to use the measured resonance frequency f.

than the value obtained from the magnetic-wall model. Also,

since the electric filling factor is much larger than the magnetic

filling factor we will use the explicit expression for the electrical

energy in all energy calculations, thus making the error as small

as possible since the internal fields are better known than the

external.

Two COUPLED RESONATORS

We are now going to study the two-resonator system shown in

Fig. 2. The magnetic coupling coefficient, to be used in an equiv-

alent circuit, we calculate from the separation of the resonance

frequencies fl and fz, obtained when the fields are in and out of

phase, respectively. From perturbation theory ([8 ], with the

small modification of introducing e, in the derivation) we get

where l?. is the unperturbed field of one resonator, ~P is the

polarization current density of the other, and 1? is the total

perturbed field.

We now assume weak coupling so that the field distribution

inside the resonators is unchanged and the correlation energy in

the denominator is much less than the self-energy. Then we can

use (5d)-(5f) to obtain 7P, (6a) for ~. in the numerator, and put

~ equal to l?. and the magnetic energy equal to the electric
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energy in the denominator, This gives

m .?,, 8@Km2 ~ e-a””’” (11)
k_ f2–fl__M2f10

f. mm
n even

where Z. is the center distance between the resonators and WI

is the stored energy of one resonator [2, eq. (11)]. Hence we see

that we obtain the same result as when the resonator is treated

as a single magnetic dipole [1], except for the correction factors

Kmn2. (A slightly difTerent definition of A4 is used in [1] which,

however, does not affect the present comparison.)

If the resonator cannot be considered very small or if we want

to find the fields close to the resonators so that higher modes

must be taken into account, the correction factors Km. in (6) and

(11) cannot always be neglected.

Two other interesting cases are when the resonators are placed

on a substrate as shown in Fig. 3(a) and (b). The natural modes

in these cases are LSE- and lLSM-modes [7], In the case of

Fig. 3(b), (5a)-(5e) are still valid, while in the case of Fig. 3(a)

we have to replace the argument ~iX’ by Ytx’ + dx, since we no

longer have a symmetry in the x’ direction [2]. In the practical

cases of interest, however, 4X, is quite small. We also introduce

the variables hm and 1~, being the constants of propagation in the

2 direction in the air and substrate regions, respectively, and the

factors

Dm~=d-

~Gk--)

sin 2hmd + sin12 hmd

2hm
(12a)

DmE=d+
sin 2hmd ~ COS2hmd

(

* ~ sin 21mt

2hm ~ COS2 lmt )

— (12b)
21m

but keep the definitions for A4 and WI.

In the case of Fig. 3(a) we obtain

k=
M2po

-Knzn’”o

Kmn12~wo2e-%mz0

(13)

amnDmB
LSE

where we obtain K,.R’ from (9) by changing Kmn(x) to

1

(

sin (hm + YJL/2” sin (h~p + d.,)

2 sin YiL/2 h~/yi + 1

+ sin (hm – yi)L/2. sin (h~p - &)

h~/yi – 1 )“

In the case of Fig. 3(b) we olbtain

{

()k = -‘~ ~ ‘m2Km::,g~D::-”m”z0

IIodd m
LSE
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where all variables in the first sum are calculated for LSE-modqs

and in the second for LSM-modes and where we obtain K~m”

from (9) by multiplying by cos hmp and replacing nz/b by hm and

mnla by nnlb.

DISCUSSION OF OTHER METHODS

Various authors [1], [2], [4], [5] have, instead of using the

polarization current, used a magnetization as the source of the

waveguide fields. We are now going to show that this leads to

theoretical problems and that such approximations give errors

that cannot always be neglected. To do this we will try to

identify 3P in (3) with a magnetization i$? and a potential Q

according to

Vx17=~P +jcmo~=Vx~+VQ +jcmol?. (15)

If we define P = B - iW we get

VxE’=VQ+jox?o~ (16)

V x E = –jco~ = -jcopoP – jcoflolZ (17)

where we are free to set V, @ = O.

Hence we get a magnetic current jo.),uoi?i?, and if ~ and VQ

equals zero for z > A/2, We get for the excitation amplitude

in analogy with (3)

en+ _ kwO J J17n- . ii? dV – ~ VQ . En- dV. (18a)
Pn n

Now we want to represent the resonator with a magnetization

only; that is, we want to put VQ = O, and

(18b)

However, since p = O, we have

V2Q=jwV. P= –jwD.V~ (19)
r

which equals zero only if either e, = constant, which is not the

case here, or if D 1 V(l /8,). Consequently, if Cr is constant

inside the resonator, the requirement V2Q = O is satisfied only

if D is parallel to the resonator surface. This is true in the

magnetic-wall model but not in a more realistic case. We con-

clude therefore that it is not, in general, possible to obtain an

exact solution using only the magnetization.

Let us now look at the idealized case for which D 1 V(l/&,).

According to [1], a reasonable assumption is that ~ averaged

along the resonator axis is proportional to 3, that is Jl * E,

and according to [2] we should use ii?l w e,l?. However, for iiZ

to be proportional-to R inside the resonator we must have

()

l_
iiZ=l-; H

r

because only then

V x ii? = jm(&r – l)eoi$

is satisfied. On the surface of the resonator we then get

()

vx@= l.!..

()
vxl!l-vlx~

ET .$,

()

=Jv–vl. XR.
&r

(20)

(21)

(22)
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The last term is equivalent to the surface current density

(23)

which must exist for the magnetization to be dkcontinuous.

Hence, the assumption that ~ N ~ is, in general, incorrect. Note

that in the magnetic-wall model this term is zero on the magnetic

walls but not on the other walls. Note also that if the assump-

tion that iW N fl were correct the resonator would be equivalent

to a magnetic resonator. We also see that ~~, is approaching the

finite function – fi x E as E,l ~ co.

In fact, with (18b) together with (20) we get a correction factor

K~n’” for the case.in Fig. 1 which is obtained from (9) by multiply-

ing cos (mrrL/2a) in Km.(X) by

1+:(=3”
This expression does not approach unity even when e,l -+ m

unless YiL ~ O at the same time.

We can also write Maxwell’s equations in the form

VxD=–jco.@+Vx F (24a)

Vx17=jfoD. (24b]

From this we obtain, in analogy with (1 8a), since Crz = 1

en+=–~ J17n-. VxPdV
&oPn ~

jfo,ao.—

J

(erl – l)~n- . ~ dV
P. ~

++
f

(:,1 – 1)~ X En- d~. (25)
n resonator

surface

The first term in (25) seems to support the assumption made in

[2] that IZ w @ for Crl * co. In this case we can, however,

definitely not neglect the second term, since the electric field

has a maximum on the magnetic walls. In fact, the two terms in

(25) must be of almost the same magnitude since the first term

gives a value e,l larger than that obtained from (18b) together

with (20) which, in turn, usually gives a much smaller error.

A third commonly used expression [4], [5] is to regard

where f has its origin in the center of the resonator, as a distri-

buted magnetization density. This is associated to the formula

for the total dipole moment from a closed current loop

(27)

However, (26) is in general not valid for large current loops.

Applying (26) together with (18b) to the case in Fig. 1 we get a

rather complicated expression for the correction factors Km.(x),

which, however, gives the correct result for small resonators.

The conclusion of this section is that (3) and(18b) with ~ % ~

are not identical even if ~ 1. V(l/e,) and &,l ~ m, although the

differences in the results are usually small. If the resonator can

be considered very small, however, the approximation Z7 =

=$F x ~ can be used. In fact, it seems impossible to find a simple

definition for ii? which fultills the boundary conditions.

‘o-z\ ‘“-z~...\
10-37 -$
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fO = 6.345 GHz when S,I * co f. = 6.345 GHz

Fig. 4.

EXPERIMENTAL RESULTS

Two experiments have been made with resonators made of

Ti02, &,l = 90. The resonator dimensions were, in experiment I,

A = 10.16 mm, B = 5.08 mm, and L = 1.51 mm; while in

experiment II, A and B were interchanged. The resonators were

placed in a waveguide with dimensions a = 10.16 mm and

b = 22.86 mm, and the resonance frequencies were in both

experiments 6.345 GHz. In Fig. 4(a) and (b) the. measured

coupling coefficients in experiments I and II are shown together

with some theoretical curves, in which the magnetic-wall-model

fields (5) have been used. Curve e) in Fig. 4 has been obtained by

dividing the values in curve b) by a factor of 1 – (ao27i2)l(4&rlrt2),

which makes it equal to curve d) as &rl -i m.

From Fig. 4 we see that the experimental points are in good’

agreement with curve a) and that in Fig. 4(a) they are well

separated from the usually used curve d) and also from curves

b) and c). This result also supports the assumption that the

magnetic-model fields are good approximations to the real

fields for this purpose.

CONCLUSION

The coupling between dielectric ‘resonators have been treated

by starting from the polarization current density instead of the

usually used magnetic-dipole moment. We thus obtained expres-

sions which showed that the differences between the methods

may be significant. Experiments have also been done which

support the assumption that the method treated here gives quite

accurate results also when we use a polarization current density

obtained from the magnetic-wall model.

ACKNOWLEDGMENT

The author wishes to thank Dr. O. Nilsson and Dr. E. Kollberg

for making many valuable suggestions about the manuscript.

REFERENCES

[2] !%-%!!
integrated c,
vol. MTT-19, pp. 643–652, July 1971.

[1] S. B. Cohnl “Microwave bandpass filters containing high-Q dielectric
IEEE Trans. A4icrowaue Theory and Techniques, vol.

J. 218–227, April 1968.
id, “Dielectric resonator filters for application in microwave
mcuits,~’, _IEEE _T~ans. Microwave Theory and Techniques,



SHORT PAPERS 619

[3]

[4]

[5]

[6]

[7]

[8]

J
A

A“. Okaya and L. F. Barash, “The dielectric microwave resonator;’
Proc, IRE, vol. 50, pp. 2081-2092, Oct. 1962.
J. L. Pellegrin, “The filling factor of shielded dielectric resonators,”
‘EEE Trans. Microwave Theory and Techniques, vol. MTT-17, pp.

764-768, Ott 1~~o
L. V. Alekse.
tion of an open dielectric resonator” in a transmission line;” Radio-
tekhnika i Elektronika, vol. 17, pp. 1814–1821, Nov. 1972.
R. E. Collin, Foundati{
McGraw-Hill, 1966, pp. 18~-190.

.-

—, Field Theory of Guided Waves. New York: McGraw-Hill, 1960,.— am” -,. -

., . . . . .
;ychik, V. M. Gevorlcyan, and Yu A. Kazantzev, “Excita-

~ons for Microwave Enaineerina. New York:

1p. LL4-L>L.

<. F. Sohoo, Theory and Applications of Ferrites. Englewood Cliffs,
NJ: Prentice-Hall, 1960, pp. 260-262.

WL

--Z-

Fig. 1. Effect of series inductance L on the phase shift.

Effect of Diode Parameters on lReflection-Type Phase Shifters

PRADEEP WAHI, STUDENT MErvfBER,lEEE, AND K. C. GUPTA

Absfract—This short paper describes effects of series inductance,

shunt capacitance, and resistances associated with p-i-n diodes on the
performance of reflection-type digital phase shifters using a shorted
transmission line behind a shunt-mounted diode. [t is found that the shunt
capacitance is the most dom&mt reactance influencing the phase shift
and it increases the phase-shift value. The series inductance reduces the

phase-shift valae. Expressions for phase shift in various eases are

presented.

INTRODUCTION

One of the design configurations for a reflection-type phase

shifter consists of a p-i-n diode shunt mounted across a trans-

mission line at a distance 1from the shorted end [1]. Phase of the

reflected wave at the diode plane changes when the bias on the

diode is changed from forward to reverse, as the later implies

inclusion of an additional line length 1. Thus the phase shift

obtained is given approximately by 2jlz where B is the phase

constant of the’ line. This arrangement is converted into a

two-port phase shifter by using a circulator or a hybrid.

A simple procedure for designing such a phase shifter assumes

the p-i-n diode to be ideal, i.e., short circuit when forward

biased and open circuit when reverse biased. This method does

not yield accurate result at higher frequencies when parasitic

reactance and resistances associated with the diode become

significant, This short paper describes the effect of diode react-

ance and resistances on the phase-shift characteristics of this

type of phase shifter.

DIODE PARAMETERS

The important parameters of a p-i-n diode are; series induc-

tance L. (typically 0.4--2.0 nH), shunt capacitance C (0.1-2 pF),

forward-bias series resistance l?. (0,5-2.0 Q), and reverse-bias

shunt resistance R (N 10 M2). The effect of these parameters

may be considered analytically by taking them one by one in

association with an ideal switch. Phase-shift and insertion-loss

calculations are carried out by adding the diode admittance to

the admittance of the line behind the diode” and finding out the

reflection coefficient caused by this combination.

EFFECT OF SERIES INDUCTANCE

When an inductance L is in series with the ideal switch (Fig. 1

inset) the phase-shift expression is obtained as

4 = 2/32 + 2 tan-i [cot 81 + Zo/roL] – z. (1)

14z2zLLLL_-L-+ ‘
o 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2L 3.0

— (@c/ yo)

Fig. 2. Effect of shunt capacitance Con the phase shift.

It may be noted that the phase shift 4 varies with both the line

length behind the diode and the reciprocal of the normalized

reactance (Zo/roL). Differentiating (1) with respect to L one gets

ad 2

()

20 1

z=

[(

2 ;,’~
(2)

1+ cot~l+: )1
which shows that the phase shift decreases with an increase in L.

The percentage deviation of the phase shift from an ideal case

versus the normalized series reactance is plotted for three different

cases in Fig. 1. It is seen that the deviation “from the ideal case

increases with the value of L. Also the deviation is higher for

smaller values of phase shift (/?i).

EFFECT OF SHUNT CAPACITANCE

The expression for phase shift for the case when there is a

capacitance in parallel with ideal switch (Fig. 2) is found to be

~=2tan-1[%-cot~zl ‘x-
(3)

The phase shift varies with both the length and the normalized

shunt suseeptance. Differentiating “(3) with respect to capacitance

c ?“

ad 1

()

co—.
ac

[(

2
~

(4)

1+ W–cotl?l
Y. )1
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which is always positive. Hence the phase shift always increases

Kanpur, India. with an increase in the capacitance value. The effect of increase


